MULTI-VIEW VERTEBRA LOCALIZATION AND IDENTIFICATION FROM CT IMAGES

Han Wu¹, Jiadong Zhang¹, Yu Fang¹, Zhentao Liu¹, Nizhuan Wang¹, Zhiming Cui^{1,,\vee,} and Dinggang Shen^{1,2,3,\vee}

¹School of Biomedical Engineering, ShanghaiTech Univerisity, Shanghai, China ² Shanghai United Imaging Intelligence Co. Ltd., Shanghai, China ³ Shanghai Clinical Research and Trial Center, Shanghai, China cuizhm@shanghaitech.edu.cn, dqshen@shanghaitech.edu.cn

BACKGROUND

Problem: Automatic Localization and identification of vertebra from CT images are crucial in clinical practice, particularly for surgical planning, pathological diagnosis, and post-operative evaluation.

METHOD

Challenges:

- Current SOTA methods solved vertebrae labeling task in patch-wise methods where cropped patches are always used as inputs for 3D model instead a whole 3D volume, which limits the amount of global information to be learned.
- The intrinsic sequential structure embedded along the spine vertebrae can hardly be well-captured with existing 3D patch-wise methods.
- Complex training and inference settings, with cropping and fusion patches strategy, requiring careful attention for its hyper-parameters(patch size, overlap etc.).

EVALUATION METRIC

- **Localization Error(L-Error):** The average Euclidean distance between the ground truth centroids and predictions.

Fig.1. Overview of our proposed method

Step 1: Introduce DRR to transform a 3D labeling tasks into a set of 2D tasks and pretrain the backbone with proposed contrastive learning strategy.

Step 2: Finish the 2D labeling on single-view with two 2D networks where the whole projection images are used as input for global information and proposed Sequence Loss is used as extra supervision for sequential information.

Step 3: Final 3D localization and identification results are obtained by the proposed multi-view fusion strategy with a least-square algorithm and a multi-view weighted voting.

Identification Rate(Id-Rate): The ratio of correctly identified vertebrae to the total number of vertebrae.

RESULTS

Table 2. Ablation on each components

Fig.2. Results on different number of views

Fig.3. Qualitative results on typical challenging cases

CONCLUSIONS

- A novel framework using multi-view DRR is proposed for 3D vertebrae labeling:
- We achieve superior results against other SOTA methods with just two 2D networks.
- Global information is naturally captured on 2D projecting images and sequential information is well-learnt under the supervision of our Sequence Loss.
- Multi-view fusion and our contrastive learning prove to be effective in the final labeling results

REFERENCE

[1]. Sekuboyina, A. et al.; Verse: A vertebrae labelling and segmentation benchmark for multi-detector ct images. Medical image analysis 73, 102166 (2021) [2]. Cui, Z. et al.; Vertnet: Accurate vertebra localization and identification network from ct images. In: Medical Image Computing and Computer Intervention–MICCAI Assisted 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part V 24. pp. 281–290. Springer (2021)

CODE

